${ }^{13} \mathrm{C}$ n.m.r. determination of the isotacticity of the propylene homopolymer part in ethylene-propylene block copolymers

Takashi Kanezaki*, Kazuo Kume and Kazuo Sato
Polymer Research Laboratory, Idemitsu Petrochemical Co. Ltd, 1-1 Anesaki-Kaigan, /chihara, Chiba 299-01, Japan
and Tetsuo Asakura
Department of Biotechnology, Tokyo University of Agriculture and Technology, Nakacho 2-chome, Koganei, Tokyo 184, Japan
(Received 22 December 1992)

Ethylene-propylene block copolymer (B-PP) consists of two parts: propylene homopolymer and copolymer of ethylene and propylene. A method for determining the isotacticity, mmmm , of the propylene homopolymer part in B-PP is proposed here, using only the ${ }^{13} \mathrm{C}$ n.m.r. spectrum of B-PP. This is a conventional method to determine the isotacticity with high precision.
(Keywords: ${ }^{13} \mathrm{C}$ n.m.r.; ethylene-propylene block copolymer; isotacticity)

INTRODUCTION

Ethylene-propylene block copolymer (B-PP) is one of the most important industrial polymers. A small amount of ethylene unit is usually introduced to isotactic polypropylene (I-PP) in order to improve the mechanical properties such as impact strength. Therefore, it is difficult to determine the isotacticity of the I-PP part in $\mathrm{B}-\mathrm{PP}$ because of the presence of ethylene units. To date, two methods have been used for determining the isotacticity.

The first method is a 'sampling method'. During B-PP preparation, the isotactic polymerization of propylene is first performed, followed by copolymerization with ethylene in the presence of the isospecific catalyst. Just before the second polymerization with ethylene, I-PP alone is collected and the isotacticity of I-PP is determined by ${ }^{13} \mathrm{C}$ n.m.r. spectroscopy. At present, ${ }^{13} \mathrm{C}$ n.m.r. is the most powerful analytical method for determining the tacticity of polypropylene, and pentador heptad-level assignments have been reported for the methyl carbon ${ }^{1-8}$. Since this sampling method gives the isotacticity directly, the tacticity determined for the I-PP in B-PP is reliable. However, the sampling itself is complicated and is not applicable to commercial B-PP samples.

The second method is the fractionation of B-PP samples. B-PP sample is dissolved at $135^{\circ} \mathrm{C}$ in p-xylene $(5 \mathrm{~g} / 700 \mathrm{ml})$, then the solution is cooled gradually to room temperature. The precipitated fraction is considered to be I-PP whose isotacticity is determined by ${ }^{13} \mathrm{C}$ n.m.r. This method is relatively simple and avoids sampling during B-PP polymerization. However, there is a possibility that small amounts of the ethylene-propylene ($\mathrm{E}-\mathrm{P}$) part still remain in the precipitated fraction; peaks from the E-P part are sometimes observed in the fraction. In addition, the fractionation requires at least 10 h .

[^0]Thus, it is necessary to develop an analytical method, other than these two methods, to determine in detail the isotacticity of the I-PP part of the B-PP sample. In this paper, we propose a conventional method to determine directly and with high precision the isotacticity of the I-PP part in B-PP from the ${ }^{13} \mathrm{C}$ n.m.r. spectrum of B-PP. The validity of this method is supported by a comparison with the isotacticity of I-PP obtained by the sampling method.

EXPERIMENTAL

Materials

Isospecific homopolymerization of propylene was carried out in the presence of Ziegler-Natta catalysts and a part of the sample was obtained as I-PP. After this sampling, a small amount of ethylene was added and the polymerization, i.e. copolymerization of propylene and ethylene, was continued. Thus, sets of B-PP and I-PP samples were obtained. Ten kinds of B-PP and I-PP sets were prepared by changing the ethylene content from 2.3 to $8.2 \mathrm{wt} \%$.
To gain further information from analysing the ${ }^{13} \mathrm{C}$ n.m.r. spectrum of B-PP, E-P copolymers (EPR) and I-PP samples were prepared independently. EPR samples were prepared by the following procedure. B-PP samples were dissolved at $135^{\circ} \mathrm{C}$ in p-xylene, then the solution was cooled gradually to room temperature. After the precipitated fraction (mainly I-PP) was removed by filtration, the solution of EPR was obtained. This was precipitated by pouring into large amounts of methanol. Seventy-five EPR samples were obtained. Thirty-four kinds of I-PP ($\mathrm{mmmm} \geqslant 93 \mathrm{~mol} \%$) were prepared with the same catalyst as that used in the B-PP polymerization.

${ }^{13} \mathrm{C}$ n.m.r. measurements

${ }^{13} \mathrm{C}$ n.m.r. spectra were measured at $130^{\circ} \mathrm{C}$ using a JEOL-EX400 n.m.r. spectrometer operating at 100.1 MHz .

Figure 1 The methyl region of ${ }^{13} \mathrm{C}$ n.m.r. spectra of ethylenepropylene block copolymer (B-PP) and isotactic polypropylene (I-PP) samples. The I-PP was obtained by sampling during the B-PP polymerization process (see text)

The polymer samples were dissolved in the mixed solvent of 1,2,4-trichlorobenzene and benzene- d_{6} ($9: 1$ volume ratio). The polymer concentration was $7 \mathrm{wt} \%$. In all measurements, broad-band noise decoupling was used to remove ${ }^{13} \mathrm{C}-{ }^{1} \mathrm{H}$ coupling. The pulse repetition time was 4 s (45° pulse) and $1000-2000$ scans were performed. Tetramethylsilane (TMS) was used as internal chemical shift reference.

RESULTS AND DISCUSSION

Figure 1 shows the methyl region of ${ }^{13} \mathrm{C}$ n.m.r. spectra of B-PP and I-PP samples. The latter was obtained by sampling during the B-PP polymerization process.

The assignment of the methyl region of highly isotactic PP has been reported ${ }^{1-3}$. Except for the main peak, mmmm , the peaks $m m m r, m m r r$ and $m r r m$ are clearly observed. The relative intensities are $2(\mathrm{mmmr}): 2(\mathrm{mmrr})$: $1(\mathrm{mrrm})$, indicating catalytic control in I-PP polymerization ${ }^{9}$. The peaks rmmr, mmrm, rmrr, rrrr and $m r r r$ are also detected, although the peak intensities are quite low.

In the B-PP spectrum, the peaks $1,2,3,5$ and the shoulder peak of 8 are assigned to $\mathrm{mmmm}(1+2), \mathrm{mmmr}$ (3), mmrr (5) and mrrm (shoulder peak of 8), respectively, in the I-PP part. The peaks $4,6,7$ and 8 are therefore assigned to the EPR part in the B-PP sample. This is confirmed by the ${ }^{13} \mathrm{C}$ n.m.r. spectra (methyl region) of a series of soluble fractions of the EPR part only in seven B-PP samples (Figure 2). The assignment of EPR has been reported ${ }^{10}$ as shown in Figure 2. It is noted that peaks 1 and 3 in the spectrum of B-PP come from both EPR and I-PP parts. Thus, it is not easy to determine directly the isotacticity of the I-PP part from the ${ }^{13} \mathrm{C}$ n.m.r. spectra of B-PP.

From the ${ }^{13} \mathrm{C}$ n.m.r. spectra of the EPR part in Figure 2 , it is noted that the intensities of both peaks, I (PPPPP) and I (PPPEP+PPPEE) decrease relatively with increasing ethylene content in a series of EPR samples. It is therefore possible to estimate the relative intensities of I (PPPPP) from those of I (PPPEP + PPPEE) in the spectra of B-PP because the peak PPPEP + PPPEE does not overlap with the I-PP peaks except for the very small peak of mmrm + rmrr. Figure 3 shows the plots of the ratio of the peak intensities, I (PPPPP)/ I (EPPEP + EPPEE) against the ratio of the peak
intensities I (PPPEP + PPPEE)/I (EPPEP + EPPEE) obtained from the ${ }^{13} \mathrm{C}$ n.m.r. spectra of 75 EPR samples. The correlation coefficient is 0.85 . If the ratio of the peak intensities, I (PPPEP + PPPEE)/I (EPPEP + EPPEE), is obtained in the spectrum of B-PP, the peak intensity of PPPPP can be estimated. By subtracting the peak intensities, I (PPPPP), of the EPR part from the intensities of peaks 1 and 2, the fraction of mmmm in the I-PP part will be obtained.

The fraction of $m r r m$ in the I-PP part can be obtained from the separation of peak 8 , assuming a Lorentzian in the expanded spectra of B-PP because the position of the mrrm peak is slightly up-field of peak 8, PEPEP + PEPEE + EEPEE, in the EPR part.

It is difficult to determine the fraction of $m m m r$ from the B-PP spectra directly because peak 3 is assigned to both mmmr of the I-PP part and PPPPE of the EPR part.

The fraction of $m m m r$ is assumed to be the same as that of $m m r r$ because the polymerization process of the I-PP part is under catalytic control (Figure 1) ${ }^{9}$.

The fractions of $r m m r, m m r m+r m r r, r r r r$ and $m r r r$ of I-PP are very small, but not negligible, in the determination of the fraction of mmmm in the B-PP sample. Therefore, we will try to obtain the information independently. The ${ }^{13} \mathrm{C}$ n.m.r. spectra of 34 I-PP samples with $m m m m$ fractions from 93.9 to $97.7 \mathrm{~mol} \%$ were used to determine the fractions of rmmr, $m m r m+r m r r, r r r r$ and $m r r r$ relative to the fraction of

Figure 2 The methyl region of ${ }^{13} \mathrm{C}$ n.m.r. spectra of EPR samples (see text). The pentad sequence assignments are shown. Et, E and P represent the ethylene content ($\mathrm{wt} \%$), ethylene and propylene, respectively

Figure 3 Relationship between the ratio of the peak intensities, I (PPPPP)/I (EPPEP + EPPEE) and the ratio of the peak intensities, $I($ PPPEP + PPPEE $) / I(E P P E P+E P P E E) . R=$ correlation coefficient

Table 1 Isotacticity of the I-PP part in B-PP determined by the sampling method and the method proposed here

B-PP sample	Ethylene content (wt\%)	Isotacticity (mmmm , mol\%)		
		Sampling method (1)	Present method (2)	Difference $(2)-(1)$
A	2.8	96.6	96.2	-0.4
B	2.3	96.6	96.7	$+0.1$
C	3.4	95.3	95.6	$+0.3$
D	7.0	96.0	96.3	+0.3
E	8.2	96.6	96.2	-0.4
F	5.0	97.3	97.4	+0.1
G	4.4	97.0	96.7	-0.3
H	2.9	96.6	97.1	+0.5
I	3.1	98.6	98.4	-0.2
J	5.1	97.7	98.2	$+0.5$

$m m r r$. The average fractions are 0.18 ± 0.12 (rmmr), $0.37 \pm 0.13(\mathrm{mmrm}+r \mathrm{rmr}), 0.31 \pm 0.10(r r r), 0.18 \pm 0.08$ (mrrr), when $m m r r$ is assumed to be 1 .
Thus, the fraction of mmmm of I-PP samples is calculated directly from the ${ }^{13} \mathrm{C}$ n.m.r. spectra according to the method described above. The I-PP parts are also obtained from corresponding B-PP samples by the sampling method during sample preparation. The ${ }^{13} \mathrm{C}$ n.m.r. spectra are also observed for the determination of isotacticity. The data are obtained from 10 sets of I-PP and B-PP samples (Table 1 and Figure 4). The correlation coefficient is 0.92 .

Thus, it is concluded that the present method for the determination of isotacticity of the I-PP part of B-PP has high precision.

REFERENCES

1 Zhu, S.-N., Asakura, T. and Chujo, R. Polym.J. 1984, 16, 895

Figure 4 Relation between the isotacticity of the I-PP part in B-PP obtained by the sampling method and the method proposed here. $\mathrm{R}=$ correlation coefficient

2 Asakura, T., Omaki, H., Zhu, S.-N. and Chujo, R. Polym. J. 1984, 16, 717
3 Hayashi, T., Inoue, Y., Chujo, R. and Asakura, T. Polymer 1988, 29, 138
4 Randall, J. C. J. Polym. Sci. 1976, 14, 2083
5 Zambelli, A., Locatelli, P., Bajo, G. and Bovey, F. B. Macromolecules 1975, 8, 687
6 Schilling, F. C. and Tonelli, A. E. Macromolecules 1980, 13, 270
7 Tonelli, A. E. Macromolecules 1978, 11, 565
8 Tonelli, A. E. Macromolecules 1979, 12, 83
9 Wolfsgruber, C., Zannoni, G., Rigamonti, E. and Zambelli, A. Makromol. Chem. 1975, 176, 2765
10 Hayashi, T., Inoue, Y., Chujo, R. and Asakura, T. Polym. J. 1989, 20, 895

[^0]: * To whom correspondence should be addressed

